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In a recent paper, Altschuler and Pérez-Garrido �Phys. Rev. E 76, 016705 �2007�� have presented a four-
dimensional polytope with 80 vertices. We demonstrate how this polytope can be derived from the regular
four-dimensional 600-cell with 120 vertices if two orthogonal positive disclinations are created. Some related
polytopes are also described.
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In 1904 Thomson �1� presented his “plum pudding”
model of the atom, where pointlike electrons are embedded
in a positively charged background. Since electrons repel
each other, they have to find the lowest energy configuration
on the surface of the sphere. Although Thomson’s model has
been outdated for a long time by quantum mechanics, his
problem of placing charges on a sphere is still noteworthy.
The results for a circular disk are trivial, namely regular
polygons. The problem on the ordinary sphere is well studied
�see, for example, Altschuler and Pérez-Garrido �2� for re-
cent references�. The problem on a four-dimensional hyper-
sphere has not been treated in depth up to now. For arbitrary
dimensions there are mathematical proofs that certain special
configurations �3� are optimal for small numbers of charges.

Quite recently Altschuler and Pérez-Garrido �2� studied
Thomson’s problem on the hypersphere and discovered an
unknown, highly symmetrical four-dimensional polytope
with 80 vertices, but they failed to describe the polytope in
detail. Since we believe that the polytope could be a proto-
type for other charge configurations on the hypersphere, we
will describe it in detail trying to bring it down to three
dimensions as far as possible. We show how the polytope can
be derived from the regular 600-cell in four dimensions and
that it is the member of a family of four-dimensional poly-
topes.

As an example, let us start with an icosahedron in three
dimensions. We place one vertex at the north pole and the
opposite one at the south pole �Fig. 1�. Five other vertices lie
on the northern hemisphere and five on the southern hemi-
sphere. If we cut out a wedge with an angle of 72° between
the poles as indicated in Fig. 1 and glue together the open
lips, we get a square antiprism with two pyramids placed on
the square faces, a polytope also called a gyroelongated
square antiprism �gesa�. The polyhedron belongs to the fa-
mous Bernal hole polyhedra where it is called Z10 �4�. The
icosahedron has 12 vertices, 30 edges, and 20 faces. We re-
move a vertex on the northern hemisphere, glue together two
vertices on the southern hemisphere and remove two tri-
angles and four half triangles, furthermore, five edges, and
glue together another edge. In total this leads to the gesa with
10 vertices, 24 edges, and 16 faces. Compared to the icosa-

hedron, the gesa possesses a positive disclination character-
ized as a line through the poles and its center. If the surface
is considered only, then the disclination is characterized by
the angular deficiency at the poles.

Instead of cutting out a piece we could also squeeze in a
wedge into the icosahedron thus forming a negative disclina-
tion. The resulting polyhedron is a gyro-elongated hexagonal
antiprism with 14 vertices, 36 edges, and 24 faces. It is
known as the Frank-Kasper polyhedron Z14 �5�. Repeated
additions and removal of wedges are also possible and lead
to multiple disclinations. The polytopes, however, become
more and more distorted. By similar repeated surgeries one
can derive all the deltahedra in three dimensions from the
icosahedron, including the octahedron and the tetrahedron.

Now let us turn to four dimensions. The same surgeries
are also possible for the 600-cell. Usually this polytope is
described by its shells around a vertex �6�: starting from a
vertex as the north pole, an icosahedra, a dodecahedron, and
a second icosahedron follow. A subsequent icosadodecahe-
dron forms the equatorial polyhedron. On the southern hemi-
sphere the sequence repeats in the opposite order. The four-
dimensional equivalent of the wedge would be a slice with a
spindlelike three-dimensional surface.

This construction, however, does not lead to the desired
80-vertex polytope. To obtain it, we have to introduce an-
other kind of shelling, namely the toroidal one. We select a
chain of ten vertices connected by edges and situated in a
two-dimensional plane. We can project the four-dimensional
polytope into three dimensions such that the chain lies in the
x-y plane, for example �see Fig. 2�. Then there are 50 verti-
ces which are connected to the chain by edges and form a
torus around the chain. Additional 50 vertices are connected
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FIG. 1. Transformation of a icosahedron �left� into a gyro-
elongated square antiprism �gesa, right�. The shaded wedge is cut
out and the left and right lips are glued together at the dashed line in
the gesa.
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by edges to the first torus and lie on a second torus. The
remaining vertices form a second chain in a plane perpen-
dicular to the x-y plane. In Fig. 2 these vertices are placed on
the z axis. The upper and lower end of the second chain are
connected in four dimensions, but this is not possible in the
projection due to topological restrictions of the visualization
in three dimensions. The correctness of the shelling can be
checked easily using the coordinates given in Ref. �6�, for
example.

Now we have the prerequisites to construct the 80-vertex
polytope. There are two equivalent ways. The first one is to
introduce a positive disclination in the x-y plane. The surface
of the three-dimensional wedge becomes a lens with the x-y
chain as its circumference. To remove the material we
shorten the z chain by two vertices. The outer torus loses a
pentagonal antiprismatic ring centered around the z axis with
ten vertices. The inner torus is shrunk in diameter around the
x-y chain from pentagonal to square antiprismatic also losing
10 vertices. Up to now all neighbor polytopes stay icosahe-
dra. The x-y chain will be unaltered in length but its neighbor
polytopes are changed from icosahedra to gesa since the ver-
tices of the chain lie on the disclination line. The other pos-
sibility to construct the same polytope is to start with the x-y
chain and shorten it by two vertices, thus taking the z chain
as the disclination line. Now the torus around the x-y chain is
shortened by an antiprismatic ring and the other torus is
changed from pentagonal to square antiprismatic. The z
chain remains unaltered, but the neighbor polyhedra of its
vertices are gesa now.

The 600-cell has 120 vertices, 720 edges, 1200 faces, and
600 cells. The new polytope with one positive disclination
possesses 88 vertices with icosahedral neighbor shells and
ten vertices with gesa neighbor shells. This leads to �12
�88+10�10� /2=578 edges, since each edge connects two
vertices. Similarly we have �30�88+24�10� /3=960 trian-
gular faces and �20�88+16�10� /4=480 tetrahedral cells.

The 80-vertex polytope is now simply generated if both
disclinations are built in: both chains are shrunk by two ver-
tices each and both tori lose ten vertices in the first and eight
vertices in the second step. The result can be compared to
Ref. �2�, Fig. 1, especially to the part with the red edges: the
vertices with the red dots lie on the disclination lines. As
given by Altschuler and Pérez-Garrido, the polytope pos-
sesses 64 vertices with icosahedral neighborhood and 16
with gesa neighborhood. This leads to �12�64+10�16� /2

=464 edges as can be checked also from Fig. 1 in Ref. �2�.
Similarly we have �30�64+24�16� /3=768 triangular
faces and �20�64+16�16� /4=384 tetrahedral cells.

If we denote a positive disclination along the x−y plane
as d1 and a negative as −d1 and similarly disclinations along
the z axis with d2 and −d2, then a �d1 ,d2� polytope contains
10−2d1+2�5−d1��5−d2�+2�5−d2��5−d1�+10−2d2=120
−22�d1+d2�+2d1d2 vertices, since it consists of a �10−2d1�
and a �10−2d2� polygon, a �5−d1�-antiprismatic torus with
2�5−d2� segments, and a �5−d2�-antiprismatic torus with
2�5−d1� segments. The number of edges, vertices, and cells
can be found by evaluating the neighbor polyhedra as given
in the first section. Since all cells are tetrahedra it follows
that the number of faces has to be twice the number of cells.
All the counts can be checked by the four-dimensional Euler
formula: the number of vertices plus the number of faces has
to be equal to the number of edges plus the number of cells.

The symmetry group of the �d1 ,d2� polytopes can also be
given: The symmetry of a n-fold symmetric polygon is the
dihedral group Dn of order 2n. But since the tori are formed
of antiprismatic rings, the symmetry reduces to D�n/2�. By the
way, this is the reason why we have to remove or add at least
two vertices perpendicular to the disclination line �changing
lengths by an odd number of vertices may also be possible,
but lead to helically twisted polytopes�. The symmetry group
of the �d1 ,d2� polytopes is at least the direct product
D�5−d1��D�5−d2�. If d1=d2, then there is an additional invo-
lution which maps the two chains onto one another. And for
d1=d2=0 we obtain the famous 600-cell with a much larger
symmetry group. Knowing the symmetry group is very help-
ful for the derivation of coordinates for the �d1 ,d2� poly-
topes.

There are a lot more possibilities to construct the four-
dimensional analogs of the deltahedra in three dimensions.
Most of them, like the 98- and the 80-vertex polytopes pre-
sented here cannot be realized by regular tetrahedra but by
distorted ones only. Thus they are not included in the com-
plete list of four-dimensional deltatopes made of regular tet-
rahedra as given in Refs. �7,8�.

In conclusion, we have analyzed a highly symmetrical
polytope discovered as a solution of Thomson’s problem on
the hypersphere. It would be interesting to test if other poly-
topes out of the family of polytopes which we described are
also solutions of the problem. In general we do not expect
this to be the case, since the disclinations and antidisclina-
tions lead to a strong deviation of the shape of the polytope
from a perfect hypersphere if nearest neighbor distances are
equal. If the charges are forced to stay on the hypersphere
this will cause a strongly stressed state.

In three dimensions it is well known that the hexagonal
lattice, which is the solution of the problem in the two-
dimensional plane, is adapted to the curved sphere through
the introduction of defects, in this case disclinations, dislo-
cation clusters, and grain boundaries �9�. We expect that the
polytope discovered by Altschuler and Pérez-Garrido and de-
scribed in this paper is a prototype of a similar adaption of
the unique regular 600-cell to different numbers of charges.
Here we have limited our analysis to the case of polytopes
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FIG. 2. Cut through the 600-cell in toroidal orientation. The
numbers indicated the number of vertices on the chains and tori.
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with two closed loop disclinations. But intersections of dis-
clinations are also possible and lead to the well-known
Frank-Kasper �5� phases as a result of squeezing the 600-cell
into three dimensions. If we combine all those types of de-

fects we can produce a huge amount of interesting polytopes.
The next step will be to test these predictions by optimiza-
tion of charge configurations on the four-dimensional hyper-
sphere.
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